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ABSTRACT

We calculate the eccentricity excitation of asteroids produced by the sweeping ν6 secular resonance during the
epoch of planetesimal-driven giant planet migration in the early history of the solar system. We derive analytical
expressions for the magnitude of the eccentricity change and its dependence on the sweep rate and on planetary
parameters; the ν6 sweeping leads to either an increase or a decrease of eccentricity depending on an asteroid’s
initial orbit. Based on the slowest rate of ν6 sweeping that allows a remnant asteroid belt to survive, we derive a
lower limit on Saturn’s migration speed of ∼0.15 AU Myr−1 during the era that the ν6 resonance swept through
the inner asteroid belt (semimajor axis range 2.1–2.8 AU). This rate limit is for Saturn’s current eccentricity and
scales with the square of its eccentricity; the limit on Saturn’s migration rate could be lower if its eccentricity
were lower during its migration. Applied to an ensemble of fictitious asteroids, our calculations show that a prior
single-peaked distribution of asteroid eccentricities would be transformed into a double-peaked distribution due to
the sweeping of the ν6 resonance. Examination of the orbital data of main belt asteroids reveals that the proper
eccentricities of the known bright (H � 10.8) asteroids may be consistent with a double-peaked distribution. If so,
our theoretical analysis then yields two possible solutions for the migration rate of Saturn and for the dynamical
states of the pre-migration asteroid belt: a dynamically cold state (single-peaked eccentricity distribution with mean
of ∼0.05) linked with Saturn’s migration speed ∼4 AU Myr−1 or a dynamically hot state (single-peaked eccentricity
distribution with mean of ∼0.3) linked with Saturn’s migration speed ∼0.8 AU Myr−1.

Key words: celestial mechanics – minor planets, asteroids: general – planets and satellites: dynamical evolution
and stability

1. INTRODUCTION

The dynamical structure of the Kuiper Belt suggests that
the outer solar system experienced a phase of planetesimal-
driven migration in its early history (Fernandez & Ip 1984;
Malhotra 1993, 1995; Hahn & Malhotra 1999; Levison et al.
2008). Pluto and other Kuiper Belt objects that are trapped in
mean motion resonances (MMRs) with Neptune are explained
by the outward migration of Neptune due to interactions with a
more massive primordial planetesimal disk in the outer regions
of the solar system (Malhotra 1993, 1995). In addition, the so-
called scattered disk of the Kuiper Belt can also be explained by
the outward migration of Neptune (Hahn & Malhotra 2005)
or by the effects of a high eccentricity phase of ice giant
planet evolution during the outward migration of Neptune
(Levison et al. 2008). The basic premise of planetesimal-driven
migration is that the giant planets formed in a more compact
configuration than we find them today, and that they were
surrounded by a massive (∼50 M⊕) disk of unaccreted icy
planetesimals that was the progenitor of the currently observed
Kuiper Belt (Hahn & Malhotra 1999). When planetesimals
are preferentially scattered either inward (toward the Sun) or
outward (away from the Sun), net orbital angular momentum
is transferred between the disk and the large body, causing
a drift in the large body’s semimajor axis (Fernandez & Ip
1984; Kirsh et al. 2009). In many simulations of giant planet
migration, icy planetesimals are preferentially scattered inward
by each of the three outer giant planets (Saturn, Uranus, and
Neptune) causing these planets to migrate outward. Due to
Jupiter’s large mass, planetesimals that encounter Jupiter are
preferentially ejected out of the solar system, leading to a net
loss of mass from the solar system and an inward migration
of Jupiter.

Planetesimal-driven giant planet migration has been sug-
gested as a cause of the Late Heavy Bombardment (LHB; Gomes
et al. 2005; Strom et al. 2005); however, the link between these
two events has yet to be definitively established (Chapman et al.
2007; Ćuk et al. 2010; Malhotra & Strom 2010). Such migra-
tion would have enhanced the impact flux of both asteroids and
comets onto the terrestrial planets in two ways. First, many of
the icy planetesimals scattered by the giant planets would have
crossed the orbits of the terrestrial planets. Second, as the giant
planets migrated, locations of mean motion and secular reso-
nances would have swept across the asteroid belt, raising the
eccentricities of asteroids to planet-crossing values.

Recently, Minton & Malhotra (2009) showed that the patterns
of depletion observed in the asteroid belt are consistent with
the effects of sweeping of resonances during the migration
of the giant planets. The Jupiter-facing sides of some of the
Kirkwood gaps (regions of the asteroid belt that are nearly
empty due to strong Jovian MMRs) are depleted relative to
the Sun-facing sides, as would be expected due to the inward
migration of Jupiter and the associated inward sweeping of
the Jovian MMRs. The region within the inner asteroid belt
between semimajor axis range 2.1–2.5 AU also has excess
depletion relative to a model asteroid belt that was uniformly
populated and then subsequently sculpted by the gravitational
perturbations of the planets over 4 Gyr, as would be expected
due to the outward migration of Saturn and the associated
inward sweeping of a strong secular resonance, the so-called ν6
resonance, as explained below. In our 2009 study, we concluded
that the semimajor axis distribution of asteroids in the main belt
is consistent with the inward migration of Jupiter and outward
migration of Saturn by amounts proposed in previous studies
based on the Kuiper Belt resonance structure (e.g., Malhotra
1995). However, in that study the migration timescale was
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not strongly constrained, because only the relative depletion of
asteroids in nearby semimajor axis bins could be determined, not
their overall level of depletion. In the present paper, we explore
in more detail the effect that planet migration would have had
on the asteroid belt due to asteroid eccentricity excitation by
the sweeping of the ν6 secular resonance. From the observed
eccentricity distribution of main belt asteroids, we find that it is
possible to derive constraints on the secular resonance sweeping
timescale, and hence on the migration timescale.

Secular resonances play an important role in the evolution of
the main asteroid belt. The inner edge of the belt nearly coincides
with the ν6 secular resonance which is defined by g ≈ g6,
where g is the rate of precession of the longitude of pericenter,
� , of an asteroid and g6 is the sixth eigenfrequency of the
solar system planets (approximately the rate of precession of
Saturn’s longitude of pericenter). The ν6 resonance is important
for the delivery of near-Earth asteroids to the inner solar system
(Scholl & Froeschle 1991). Williams & Faulkner (1981) showed
that the location of the ν6 resonance actually forms surfaces in
a − e − sin i space, and Milani & Knezevic (1990) showed
that those surfaces approximately define the “inner edge” of
the main asteroid belt. However, as mentioned above, Minton
& Malhotra (2009) found that, with the planets in their present
configuration, planetary perturbations over the age of the solar
system cannot fully account for the detailed orbital distribution
of the asteroids in the inner asteroid belt. The pattern of excess
depletion in inner asteroid belt noted by Minton & Malhotra
(2009) is consistent with the effect of the inward sweeping of the
ν6 secular resonance. In general, the direction of motion of the
ν6 is anticorrelated with that of Saturn, so an inward sweeping
of the ν6 would be produced by an outwardly migrating Saturn.

Sweeping, or scanning, secular resonances have been ana-
lyzed in a number of previous works. Sweeping secular res-
onances due to the changing quadrupole moment of the Sun
during solar spin-down have been explored as a possible mech-
anism for explaining the eccentricity and inclination of Mercury
(Ward et al. 1976). Secular resonance sweeping due to the ef-
fects of the dissipating solar nebula just after planet formation
has also been investigated as a possible mechanism for exciting
the orbital eccentricities of Mars and of the asteroid belt (Hep-
penheimer 1980; Ward 1981). The dissipating massive gaseous
solar nebula would have altered the secular frequencies of the so-
lar system planets in a time-dependent way, causing locations of
secular resonances to possibly sweep across the inner solar sys-
tem, thereby exciting asteroids into the eccentric and inclined
orbits that are observed today. This mechanism was revisited
by Nagasawa et al. (2000), who incorporated a more sophis-
ticated treatment of the nebular dispersal. However, O’Brien
et al. (2007) have argued that the excitation (and clearing) of the
primordial asteroid belt was unlikely due to secular resonance
sweeping due to the dispersion of the solar nebula.

The special case of asteroids on initially circular orbits being
swept by the ν6 and ν16 resonances has been investigated by
Gomes (1997). In this paper, we consider the more general case
of non-zero initial eccentricities; our analysis yields qualita-
tively new results and provides new insights into the dynamical
history of the asteroid belt. This extends the work of Ward et al.
(1976) and Gomes (1997) in developing analytical treatments
of the effects of sweeping secular resonances on asteroid orbits.
In doing so, we have developed an explicit relationship between
the migration rate of the giant planets, the initial eccentricity of
the asteroid and its initial longitude of perihelion, and the final
eccentricity of the asteroid after the passage of the resonance.

We show that for initially non-zero asteroid eccentricity, the
sweeping of the ν6 resonances can either increase or decrease
asteroid eccentricities. Examining the orbits of observed main
belt asteroids we find evidence for a double-peaked eccentricity
distribution; this supports the case for a history of ν6 sweeping.
Quantitative comparison of our analytical theory with the semi-
major axis and eccentricity distribution of asteroids yields new
constraints on the timescale of planet migration.

We note that although our analysis is carried out in the
specific context of the sweeping ν6 resonance during the phase
of planetesimal-driven migration of Jupiter and Saturn, the
techniques developed here may be extended to other similar
problems, for example, the sweeping of the inclination-node ν16
resonance in the main asteroid belt, the ν8 secular resonance
in the Kuiper Belt, and farther afield, the sweeping of secular
resonances in circumstellar or other astrophysical disks.

2. ANALYTICAL THEORY OF A SWEEPING
SECULAR RESONANCE

We adopt a simplified model in which a test particle (asteroid)
is perturbed only by a single resonance, the ν6 resonance. We
use a system of units where the mass is in solar masses, the
semimajor axis is in units of AU, and the unit of time is (2π )−1

yr. With this choice, the gravitational constant, G, is unity. An
asteroid’s secular perturbations close to a secular resonance can
be described by the following Hamiltonian function (Malhotra
1998):

Hsec = −g0J + ε
√

2J cos(wp − � ), (1)

where wp = gpt+βp describes the phase of the pth eigenmode of
the linearized eccentricity–pericenter secular theory for the solar
system planets (Murray & Dermott 1999), gp is the associated
eigenfrequency, � is the asteroid’s longitude of perihelion,
J = √

a(1 − √
1 − e2) is the canonical generalized momentum

which is related to the asteroid’s orbital semimajor axis a and
eccentricity e, and −� and J are the canonically conjugate pair
of variables in this 1-degree-of-freedom Hamiltonian system.
The coefficients g0 and ε are given by

g0 = 1

4a3/2

∑
j
α2

j b
(1)
3/2(αj )mj, (2)

ε = 1

4a5/4

∑
j
α2

j b
(2)
3/2(αj )mjE

(p)
j , (3)

where the subscript j refers to a planet, E
(p)
j is the amplitude of

the gp mode in the j th planet’s orbit, αj = min{a/aj , aj /a},
mj is the ratio of the mass of planet j to the Sun, and b

(1)
3/2(αj )

and b
(2)
3/2(αj ) are Laplace coefficients; the sum is over all major

planets. The summations in Equations (2) and (3) are over the
eight major planets, for the greatest accuracy; however, we will
adopt the simpler two-planet model of the Sun–Jupiter–Saturn in
Section 3, in which case we sum over only the indices referring
to Jupiter and Saturn; then gp is an eigenfrequency of the secular
equations of the two-planet system.

With fixed values of the planetary masses and semimajor
axes, g0, gp, and ε are constant parameters in the Hamiltonian
given in Equation (1). However, during the epoch of giant planet
migration, the planets’ semimajor axes change secularly with
time, so that g0, gp, and ε become time-dependent parameters.
In the analysis below, we neglect the time dependence of g0 and
ε, and adopt a simple prescription for the time dependence of

2



The Astrophysical Journal, 732:53 (12pp), 2011 May 1 Minton & Malhotra

gp (see Equation (8) below). This approximation is physically
motivated: the fractional variation of g0 and ε for an individual
asteroid is small compared to the effects of the “small divisor”
g0 − gp during the ν6 resonance sweeping event.

It is useful to make a canonical transformation to new
variables (φ, P ) defined by the following generating function:

F(−�,P, t) = (wp(t) − � )P. (4)

Thus, φ = ∂F/∂P = (wp(t) − � ) and J = −∂F/∂� = P .
The new Hamiltonian function is H̃sec = Hsec + ∂F/∂t ,

H̃sec = (ẇp(t) − g0)J + ε
√

2J cos φ, (5)

where we have retained J to denote the canonical momentum,
since P = J . It is useful to make a second canonical transfor-
mation to canonical eccentric variables,

x =
√

2J cos φ, y = −
√

2J sin φ, (6)

where x is the canonical coordinate and y is the canonically
conjugate momentum. The Hamiltonian expressed in these
variables is

H̃sec = (ẇp(t) − g0)
x2 + y2

2
+ εx. (7)

As discussed above, during planetary migration, the secular
frequency gp is a slowly varying function of time. We approxi-
mate its rate of change, ġp = 2λ, as a constant, so that

ẇp(t) = gp,0 + 2λt. (8)

We define t = 0 as the epoch of exact resonance crossing,
so that gp,0 = g0 (Ward et al. 1976). Then, ẇp(t) − g0 =
2λt , and the equations of motion from the Hamiltonian of
Equation (7) can be written as

ẋ = 2λty, (9)

ẏ = −2λtx − ε. (10)

These equations of motion form a system of linear, nonhomoge-
nous differential equations, whose solution is a linear combina-
tion of a homogeneous and a particular solution. The homoge-
neous solution can be found by inspection, giving

xh(t) = c1 cos λt2 + c2 sin λt2, (11)

yh(t) = −c1 sin λt2 + c2 cos λt2, (12)

where c1 and c2 are constant coefficients. We use the method of
variation of parameters to find the particular solution. Accord-
ingly, we replace the constants c1 and c2 in the homogeneous
solution with functions A(t) and B(t), to seek the particular
solution of the form

xp(t) = A(t) cos λt2 + B(t) sin λt2, (13)

yp(t) = −A(t) sin λt2 + B(t) cos λt2. (14)

Substituting this into the equations of motion we now have

Ȧ cos λt2 + Ḃ sin λt2 = 0, (15)

−Ȧ sin λt2 + Ḃ cos λt2 = −ε; (16)

therefore,
Ȧ = ε sin λt2, (17)

Ḃ = −ε cos λt2. (18)

Equations (17) and (18) do not have a simple closed-form
solution, but their solution can be expressed in terms of Fresnel
integrals (Zwillinger 1996). The Fresnel integrals are defined as
follows:

S(t) =
∫ t

0
sin t ′2dt ′, (19)

C(t) =
∫ t

0
cos t ′2dt ′, (20)

and have the following properties:

S(−t) = −S(t), (21)

C(−t) = −C(t), (22)

S(∞) = C(∞) =
√

π

8
. (23)

Therefore,
A(t) = ε√|λ|S(t

√
|λ|), (24)

B(t) = − ε√|λ|C(t
√

|λ|). (25)

We denote initial conditions with a subscript i, and write the
solution to Equations (9) and (10) as

x(t) = xi cos
[
λ
(
t2 − t2

i

)]
+ yi sin

[
λ
(
t2 − t2

i

)]
+

ε√|λ| [(S − Si) cos λt2 − (C − Ci) sin λt2], (26)

y(t) = −xi sin
[
λ
(
t2 − t2

i

)]
+ yi cos

[
λ
(
t2 − t2

i

)]
− ε√|λ| [(C − Ci) cos λt2 + (S − Si) sin λt2]. (27)

Because the asteroid is swept over by the secular resonance at
time t = 0, we can calculate the changes in x, y by letting
ti = −tf and evaluating the coefficients Ci, Cf , Si, Sf far
from resonance passage, i.e., for tf

√|λ| 	 1, by use of
Equation (23). Thus, we find

xf = xi + ε

√
π

2|λ|
[

cos λt2
i − sin λt2

i

]
, (28)

yf = yi − ε

√
π

2|λ|
[

cos λt2
i + sin λt2

i

]
. (29)

The final value of J long after resonance passage is therefore
given by

Jf = 1

2

(
x2

f + y2
f

)
= 1

2

(
x2

i + y2
i

)
+

πε2

2|λ| + ε

√
π

2|λ|
[
xi

(
cos λt2

i − sin λt2
i

)
− yi

(
cos λt2

i + sin λt2
i

)]
= Ji +

πε2

2|λ| + ε

√
2πJi

|λ| cos
(
φi − λt2

i − π

4

)
. (30)
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With a judicious choice of the initial time, ti, and without loss
of generality, the cosine in the last term becomes cos �i , and
therefore

Jf = Ji +
πε2

2|λ| + ε

√
2πJi

|λ| cos �i. (31)

The asteroid’s semimajor axis a is unchanged by the secular
perturbations; thus, the changes in J reflect changes in the
asteroid’s eccentricity e. For asteroids with non-zero initial
eccentricity, the phase dependence in Equation (31) means that
secular resonance sweeping can potentially both excite and
damp orbital eccentricities. We also note that the magnitude
of eccentricity change is inversely related to the speed of planet
migration. In linear secular theory (Equation (1)), eccentricity
and inclination are decoupled, and therefore the effect of the
sweeping ν6 does not depend on the inclination. However, as
Williams & Faulkner (1981) showed, the location of the ν6
does depend on inclination, but the dependence is weak for
typical inclinations of main belt objects. Nevertheless, there
are populations of main belt asteroids at high inclination (such
as the Hungaria and Phocaea families), and an analysis of
secular resonance sweeping that incorporates coupling between
eccentricity and inclination would be valuable for understanding
the effects of planet migration on these populations; we leave
this to a future investigation.

For small e, we can use the approximation J 
 1
2

√
ae2.

Considering all possible values of cos �i ∈ {−1, +1}, an
asteroid with initial eccentricity ei that is swept by the ν6
resonance will have a final eccentricity in the range emin to
emax, where

emin,max 
 |ei ± δe| (32)

and

δe ≡
∣∣∣∣ε

√
π

|λ|√a

∣∣∣∣ . (33)

Equations (31)–(33) have the following implications.

1. Initially circular orbits become eccentric, with a final
eccentricity δe.

2. An ensemble of orbits with the same a and initial non-
zero e but uniform random orientations of pericenter are
transformed into an ensemble that has eccentricities in the
range emin to emax; this range is not uniformly distributed
because of the cos �i dependence in Equation (31), rather
the distribution peaks at the extreme values (see Figure 1
below).

3. An ensemble of asteroids having an initial distribution
of eccentricities which is a single-peaked Gaussian (and
random orientations of pericenter) would be transformed
into one with a double-peaked eccentricity distribution.

3. APPLICATION TO THE MAIN ASTEROID BELT

In light of the above calculations, it is possible to conclude
that if the asteroid belt were initially dynamically cold, that is,
asteroids were on nearly circular orbits prior to secular reso-
nance sweeping, then the asteroids would be nearly uniformly
excited to a narrow range of final eccentricities, the value of
which would be determined by the rate of resonance sweeping.
Because asteroids having eccentricities above planet-crossing
values would be unlikely to survive to the present day, it follows
that an initially cold asteroid belt which is uniformly excited by
the ν6 sweeping will either lose all its asteroids or none. On the
other hand, an initially excited asteroid belt, that is, a belt with

 0.15  0.2  0.25  0.3  0.35  0.4

N
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m
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Final eccentricity

Figure 1. Final eccentricity distribution of an ensemble of particles, all having
initial eccentricity ei = 0.1 but uniformly distributed values of the phase
angle �i . The effect due to the sweeping ν6 resonance was modeled using
Equation (31), with parameters chosen to simulate asteroids at a = 2.3 AU and
with ȧ6 = 1 AU My r−1.

asteroids that had non-zero eccentricities prior to the ν6 sweep-
ing, would have the asteroids’ final eccentricities bounded by
Equation (32), allowing for partial depletion and also broaden-
ing of its eccentricity distribution. In this section, we apply our
theoretical analysis to the problem of the ν6 resonance sweeping
through the asteroid belt and compare the theoretical predictions
with the observed eccentricity distribution of asteroids.

3.1. Parameters

In order to apply the theory, we must find the location of
the ν6 resonance as a function of the semimajor axes of the
giant planets orbits, and also obtain values for the parameter ε
(Equation (3)), for asteroids with semimajor axis values in the
main asteroid belt. The location of the ν6 resonance is defined
as the semimajor axis, aν6 , where the rate, g0 (Equation (2)),
of pericenter precession of a massless particle (or asteroid) is
equal to the g6 eigenfrequency of the solar system. In the current
solar system, the g6 frequency is associated with the secular
mode with the most power in Saturn’s eccentricity–pericenter
variations. During the epoch of planetesimal-driven planet
migration, Jupiter migrated by only a small amount but Saturn
likely migrated significantly more (Fernandez & Ip 1984;
Malhotra 1995; Tsiganis et al. 2005), so we expect that the
variation in location of the ν6 secular resonance is most sensitive
to Saturn’s semimajor axis. We therefore adopt a simple model
of planet migration in which Jupiter is fixed at 5.2 AU and
only Saturn migrates. We neglect the effects of the ice giants
Uranus and Neptune, as well as secular effects due to the
previously more massive Kuiper Belt and asteroid belt. With
these simplifications, the g6 frequency varies with time as
Saturn migrates, so we parameterize g6 as a function of Saturn’s
semimajor axis. In contrast with the variation of g6, there is
little variation of the asteroid’s apsidal precession rate, g0, as
Saturn migrates. Thus, finding aν6 is reduced to calculating the
dependence of g6 on Saturn’s semimajor axis.

To calculate g6 as a function of Saturn’s semimajor axis, we
proceed as follows. For fixed planetary semimajor axes, the
Laplace–Lagrange secular theory provides the secular frequen-
cies and orbital element variations of the planets. This is a linear
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perturbation theory, in which the disturbing function is truncated
to secular terms of second order in eccentricity and first order in
mass (Murray & Dermott 1999). In the planar two-planet case,
the secular perturbations of planet j, where j = 5 is Jupiter
and j = 6 is Saturn, are described by the following disturbing
function:

Rj = nj

a2
j

[
1

2
Ajje

2
j + Ajke5e6 cos(�5 − �6)

]
, (34)

where n is the mean motion and A is a matrix with elements

Ajj = +nj

1

4

mk

M + mj

αjkᾱjkb
(1)
3/2(αjk), (35)

Ajk = −nj

1

4

mk

M + mj

αjkᾱjkb
(2)
3/2(αjk), (36)

for j = 5, 6, k = 6, 5, and j �= k; αjk = min{aj/ak, ak/aj },
and

ᾱjk =
{

1 :aj > ak

aj/ak :aj < ak.
(37)

The secular motion of the planets is then described by a set
of linear differential equations for the eccentricity vectors,
ej (sin �j, cos �j ) ≡ (hj , kj ),

ḣj = +
6∑

p=5

Apjkj , k̇j = −
6∑

p=5

Apjhj . (38)

For fixed planetary semimajor axes, the coefficients are con-
stants, and the solution is given by a linear superposition of
eigenmodes:

{hj , kj } =
∑

p

E
(p)
j {cos(gpt + βp), sin(gpt + βp)}, (39)

where gp are the eigenfrequencies of the matrix A and E
(p)
j are

the corresponding eigenvectors; the amplitudes of the eigen-
vectors and the phases βp are determined by initial conditions.
In our two-planet model, the secular frequencies g5 and g6 de-
pend on the masses of Jupiter, Saturn, and the Sun and on the
semimajor axes of Jupiter and Saturn.

For the current semimajor axes and eccentricities of Jupiter
and Saturn the Laplace–Lagrange theory gives frequency values
g5 = 3.′′7 yr−1 and g6 = 22.′′3 yr−1, which are lower than
the more accurate values given by Brouwer & van Woerkom
(1950) by 14% and 20%, respectively (Laskar 1988). Brouwer
& van Woerkom (1950) achieved their more accurate solution
by incorporating higher-order terms in the disturbing function
involving 2λ5–5λ6, which arise due to Jupiter and Saturn’s
proximity to the 5:2 resonance (the so-called Great Inequality).
By doing an accurate numerical analysis (described below), we
found that the effect of the 5:2 resonance is only important over a
very narrow range in Saturn’s semimajor axis. More significant
is the perturbation owing to the 2:1 near-resonance of Jupiter
and Saturn. Malhotra et al. (1989) developed corrections to the
Laplace–Lagrange theory to account for the perturbations from
n + 1 : n resonances in the context of the Uranian satellite
system. Applying that approach to our problem, we find that the
2:1 near-resonance between Jupiter and Saturn leads to zeroth-

order corrections to the elements of the A matrix.5 Including
these corrections, we determined the secular frequencies for a
range of values of Saturn’s semimajor axis; the result for g6 is
shown in Figure 2(a) (dashed line).

We also calculated values for the eccentricity–pericenter
eigenfrequencies by direct numerical integration of the full
equations of motion for the two-planet, planar solar system. In
these integrations, Jupiter’s initial semimajor axis was 5.2 AU,
Saturn’s semimajor axis, a6, was one of 233 values in the range
7.3–10.45 AU, initial eccentricities of Jupiter and Saturn were
0.05, and initial inclinations were zero. The initial longitude of
pericenter and mean anomalies of Jupiter were �5,i = 15◦ and
λ5,i = 92◦, and Saturn were �6,i = 338◦ and λ6,i = 62.◦5.
In each case, the planets’ orbits were integrated for 100 myr,
and a Fourier transform of the time series of the {hj , kj } yields
their spectrum of secular frequencies. For regular (non-chaotic)
orbits, the spectral frequencies are well defined and are readily
identified with the frequencies of the secular solution. The g6
frequency as a function of Saturn’s semimajor axis was obtained
by this numerical analysis; the result is shown by the solid line
in Figure 2 (a).

The comparison between the numerical analysis and the
Laplace–Lagrange secular theory indicates that the linear sec-
ular theory, including the corrections due to the 2:1 near-
resonance, is an adequate model for the variation in g6 as a
function of a6. We adopted the latter for its convenience in the
needed computations. The value of aν6 as a function of Saturn’s
semimajor axis was thus found by solving for the value of as-
teroid semimajor axis where g0 = g6; g0 was calculated using
Equation (2) and g6 is the eigenfrequency associated with the
p = 6 eigenmode (at each value of Saturn’s semimajor axis).
The result is shown in Figure 2(b).

We also used the analytical secular theory to calculate the
eigenvector components E

(6)
j in the secular solution of the two-

planet system, for each value of Saturn’s semimajor axis. We
adopted the same values for the initial conditions of Jupiter and
Saturn as in the direct numerical integrations discussed above.
Finally, we computed the values of the parameter ε at each
location aν6 of the secular resonance. The result is plotted in
Figure 3. Despite the complexity of the computation, the result
shown in Figure 3 is approximated well by a simple exponential
curve, ε ≈ 3.5 × 10−9 exp(2aν6/AU), in the semimajor axis
range 2 < aν6/AU < 4.

3.2. Four Test Cases

We checked the results of our analytical model against four
full numerical simulations of the restricted four-body problem
(the Sun–Jupiter–Saturn system with test particle asteroids) in
which the test particles in the asteroid belt are subjected to the
effects of a migrating Saturn. The numerical integration was
performed with an implementation of a symplectic mapping
(Wisdom & Holman 1991; Saha & Tremaine 1992), and
the integration step size was 0.01 yr. Jupiter and Saturn
were the only massive planets that were integrated, and their
mutual gravitational influence was included. The asteroids were

5 Corrections due to near-resonances are of order e(n−1), where e is
eccentricity and n is the order of the resonance. The 5:2 is a third-order
resonance, so its effect is O(e2). The 2:1 is a first-order resonance, so that its
effect does not depend on e. Therefore, the discrepancy between linear theory
and numerical analysis (or the higher order theory of Brouwer & van
Woerkom) arising from the Great Inequality would be much less if Jupiter and
Saturn were on more circular orbits, but the effect due to the 2:1 resonance
would remain.
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Figure 2. (a) g6 eigenfrequency as a function of Saturn’s semimajor axis, for Jupiter fixed at 5.2 AU. The dashed line shows the result from linear secular theory, with
a correction for the effect of the near 2:1 MMR between Jupiter and Saturn (Malhotra et al. 1989). The solid line shows the result from numerical spectral analysis of
233 solar system integrations (see the text for explanation). The locations of Jupiter–Saturn MMRs which have an effect on the value of g6 are indicated by vertical
dotted lines. (b) The location of the ν6 resonance (at zero inclination) as a function of Saturn’s orbit. The frequencies g6 and g0 were calculated for each value of
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obtained from spectral analysis of the 233 numerical integrations, as shown in (a).
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Figure 3. Value of the coefficient ε defined by Equation (3) as a function of the
zero inclination location of the ν6 resonance. The values of E

(i)
j were calculated

using first-order Laplace–Lagrange secular theory with corrections arising from
the 2:1 Jupiter–Saturn MMR.

approximated as massless test particles. The current solar system
values of the eccentricity of Jupiter and Saturn were adopted
and all inclinations (planets and test particles) were set to zero.
An external acceleration was applied to Saturn to cause it to
migrate outward linearly and smoothly starting at 8.5 AU at the
desired rate. As shown in Figure 2(b), the ν6 resonance was
located at 3 AU at the beginning of the simulation and swept
inward past the current location of the inner asteroid belt in all
simulations. In each of the four simulations, 30 test particles
were placed at 2.3 AU and given different initial longitudes of
pericenter spaced 12◦ apart. The semimajor axis value of 2.3 AU
was chosen because it is far away from the complications arising
due to strong MMRs. The only parameters varied between each
of the four simulations were the initial osculating eccentricities
of the test particles, ei, and the migration speed of Saturn, ȧ6.
The parameters explored were

1. ei = 0.2, ȧ6 = 1.0 AU Myr−1;
2. ei = 0.2, ȧ6 = 0.5 AU Myr−1;

3. ei = 0.1, ȧ6 = 1.0 AU Myr−1;
4. ei = 0.3, ȧ6 = 1.0 AU Myr−1.

These values were chosen to illustrate the most relevant
qualitative features. The migration rates of 0.5 AU Myr−1 and
1.0 AU Myr−1 are slow enough so that the change in eccentricity
is substantial, but not so slow that the nonlinear effects at high
eccentricity swamp the results. These test cases illustrate both
how well the analytical model matches the numerical results,
and where it breaks down.

Two aspects of the analytical model were checked. First, the
perturbative equations of motion, Equations (9) and (10), were
numerically integrated, and their numerical solution compared
with that from the direct numerical integration of the full
equations of motion. For the perturbative solution, we adopted
values for λ that were approximately equivalent to the values
of ȧ6 in the full numerical integrations. Second, the eccentricity
bounds predicted by the analytical theory, Equation (32), were
compared with both numerical solutions. The results of these
comparisons for the four test cases are shown in Figure 4.
We find that the analytically predicted values of the maximum
and minimum final eccentricities (shown as horizontal dashed
lines) are in excellent agreement with the final values of the
eccentricities found in the numerical solution of the perturbative
equations, and in fairly good agreement with those found
in the full numerical solution. Not surprisingly, we find that
the test particles in the full numerical integrations exhibit
somewhat more complicated behavior than the perturbative
approximation, and Equation (32) somewhat underpredicts the
maximum final eccentricity: this may be due to higher-order
terms in the disturbing function that have been neglected in the
perturbative analysis and which become more important at high
eccentricity; effects due to close encounters with Jupiter also
become important at the high eccentricities.

3.3. Comparison with Observed Asteroid Eccentricities

Does the eccentricity distribution of main belt asteroids
retain features corresponding to the effects of the ν6 resonance
sweeping? To answer this question, we need to know the main
belt eccentricity distribution free of observational bias, and also
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Figure 4. Comparison between the numerical solution of the averaged equations (Equations (9) and (10)) and full numerical integrations of test particles at a = 2.3 AU.
The dashed lines represent the envelope of the predicted final eccentricity, Equation (32). The values of λ are given in the canonical unit system described in
Section 2. Each panel labeled (a)–(d) plots both an analytical theory result and a numerical integration result for each of the four test cases labeled (a)–(d) in Section
3.2. The integrations were performed with Saturn starting at 8.5 AU and migrating outward linearly, while Jupiter remained fixed at 5.2 AU. Jupiter and Saturn had
their current eccentricities but zero inclination. The thirty test particles in each numerical simulation were placed at 2.3 AU with zero inclination, but with longitudes
of perihelion spaced 12◦ apart. Time zero is defined as the time when the ν6 resonance reached 2.3 AU.

relatively free of the effects of ∼4 Gyr of collisional evolution
subsequent to the effects of planetary migration. We therefore
obtained the proper elements of the observationally complete
sample of asteroids with absolute magnitude H � 10.8 from
the AstDys online data service (Knežević & Milani 2003); we
excluded from this set the members of collisional families as
identified by Nesvorný et al. (2006). These same criteria were
adopted in Minton & Malhotra (2010) in a study of the long-
term dynamical evolution of large asteroids. This sample of
931 main belt asteroids is a good approximation to a complete
set of large asteroids that have been least perturbed by either
dynamical evolution or collisional evolution since the epoch of
the last major dynamical event that occurred in this region of
the solar system; therefore, this sample likely preserves best
the post-migration orbital distribution of the asteroid belt. The
proper eccentricity distribution of these asteroids is shown in

Figure 5. This distribution has usually been described in the
literature by simply quoting its mean value (and sometimes a
dispersion; Murray & Dermott 1999; O’Brien et al. 2007). Our
best-fit single-Gaussian distribution to this data has a mean, μe

and standard deviation, σe, given by μe = 0.135 ± 0.00013 and
σe = 0.0716 ± 0.00022, and is plotted in Figure 5. However,
we also note (by eye) a possible indication of a double-peak
feature in the observed population. Our best-fit double-Gaussian
distribution (modeled as two symmetrical Gaussians with the
same standard deviation, but different mean values) to the same
data has the following parameters:

μ′
e,1 = 0.0846 ± 0.00011,

μ′
e,2 = 0.185 ± 0.00012,

σ ′
e = 0.0411 ± 0.00020.
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Figure 5. Proper eccentricity distribution of the 931 observed asteroids with
absolute magnitude H � 10.8, excluding members of collisional families. The
proper elements were taken from the AstDys online data service (Knežević &
Milani 2003). Family members identified by Nesvorný et al. (2006) were ex-
cluded. The solid lines are the best-fit Gaussian distribution to the observational
data. The dashed line is the best-fit double-Gaussian distribution.

More details of how these fits were obtained are described in
Appendix A, where we also discuss goodness of fit of the single-
and double-Gaussian distributions. A Kolmogorov–Smirnov
(K-S) test shows that there is only a 4.5% probability that the
observed eccentricities actually are consistent with the best-fit
single-Gaussian distribution and a 73% probability that they
are consistent with the best-fit double-Gaussian distribution;
while the double Gaussian is apparently a better fit to the data
compared to the single Gaussian, a K-S probability of only 73%
is quite far from a statistically significant level of confidence.
A dip test for multi-modality in the observed eccentricity
distribution (Hartigan & Hartigan 1985) is also inconclusive;
the likely reason for this is that our data sample is not very
large, and the separation between the two putative peaks is too
small in relation to the dispersion. Nevertheless, we bravely
proceed in the next section with the implications of a double-
Gaussian eccentricity distribution, with the caveat that some of
the conclusions we reach are based on this statistically marginal
result.

4. A CONSTRAINT ON SATURN’S MIGRATION RATE

By relating the g6 secular frequency to the semimajor axis
of Saturn, ġ6 can be related to the migration rate of Saturn,
ȧ6. In this section only the effects of the sweeping ν6 secular
resonance will be considered, and effects due to sweeping
Jovian MMRs will be ignored. Because Jupiter is thought to
have migrated inward a much smaller distance than Saturn
migrated outward during planetesimal-driven migration, the
effects due to migrating Jovian MMRs were likely confined
to narrow regions near strong resonances (Minton & Malhotra
2009). In the inner asteroid belt between 2.1 and 2.8 AU, these
would include the 3:1 and 5:2 resonances, currently located
at approximately 2.5 AU and 2.7 AU, respectively. As shown
in Figure 2(b), plausible parameters for the outward migration
of Saturn would have allowed the ν6 to sweep across the entire
inner asteroid belt. Therefore, the ν6 resonance would have been
the major excitation mechanism across the 2.1–2.8 AU region of
the main belt (and possibly across the entire main asteroid belt,

depending on Saturn’s pre-migration semimajor axis) during
giant planet migration.

We used the results of our analytical model to set limits on the
rate of migration of Saturn assuming a linear migration profile,
with the caveat that many important effects are ignored, such
as asteroid–Jupiter MMRs and Jupiter–Saturn MMRs (with the
exception of the 2:1 resonance). We have confined our analysis
to only the region of the main belt spanning 2.1–2.8 AU. Beyond
2.8 AU strong Jovian MMRs become more numerous. Due to
the high probability that the icy planetesimals-driving planet
migration would be ejected from the solar system by Jupiter,
Jupiter likely migrated inward. The migration of Jupiter would
have caused strong Jovian MMRs to sweep the asteroid belt,
causing additional depletion beyond that of the sweeping ν6
resonance (Minton & Malhotra 2009). A further complication
is that sweeping Jovian MMRs may have also trapped icy
planetesimals that entered the asteroid belt region from their
source region beyond Neptune (Levison et al. 2009). The effects
of these complications are reduced when we consider only
the inner asteroid belt. From Figure 2(b), we find that the ν6
would have swept the inner asteroid belt region between 2.1 and
2.8 AU when Saturn was between ∼8.5 and 9.2 AU. Therefore,
the limits on ȧ6 that we set using the inner asteroid belt as
a constraint are only applicable for this particular portion of
Saturn’s migration history.

Our theoretically estimated final eccentricity as a function
of initial asteroid semimajor axis and eccentricity is shown in
Figure 6 for three different adopted migration rates of Saturn.
The larger the initial asteroid eccentricities, the wider the bounds
in their final eccentricities. If we adopt the reasonable criterion
that an asteroid is lost from the main belt when it achieves a
planet-crossing orbit (that is, crossing the orbits of either Jupiter
or Mars) and that initial asteroid eccentricities were therefore
confined to �0.4, then from Figure 6 Saturn’s migration rate
must have been ȧ6 � 0.15 AU Myr−1 when the ν6 resonance
was sweeping through the inner asteroid belt. Our results
indicate that if Saturn’s migration rate had been slower than
0.15 AU Myr−1 when it was migrating across ∼8.5–9.2 AU,
then the inner asteroid belt would have been completely swept
clear of asteroids by the ν6 resonance.

In light of our analysis and the observed dispersion of ec-
centricities in the asteroid belt (Figure 5), we can also imme-
diately conclude that the pre-migration asteroid belt between
2.1 and 2.8 AU had significantly non-zero eccentricities. This is
because, as discussed at the start of Section 3, an initially cold
asteroid belt swept by the ν6 resonance would either lose all
its asteroids or none, and very low initial eccentricities would
result in final asteroid eccentricities in a very narrow range of
values (see Equation (32)), in contradiction with the fairly wide
eccentricity dispersion that is observed. This conclusion sup-
ports recent results from studies of planetesimal accretion and
asteroid and planet formation that the asteroids were modestly
excited at the end of their formation (e.g., Petit et al. 2002).

In the Appendix we show that the double-Gaussian distribu-
tion is a slightly better fit to the main belt asteroid eccentricity
distribution, but the statistical tests do not rule out a single-
peaked distribution. We boldly proceed with considering the
implications of the double-peaked eccentricity distribution to
further constrain the migration rate of Saturn, with the caveat
that these results can only be said to be consistent with the
observations, rather than uniquely constrained by them.

If the pre-sweeping asteroid belt had a Gaussian eccentricity
distribution, then the lower peak of the post-sweeping asteroid
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Figure 6. Final eccentricity of asteroids as a function of asteroid semimajor axis and eccentricity for three different migration rates of Saturn, estimated from
Equation (32). Asteroids swept by the ν6 resonance can have a range of final eccentricities depending on their apsidal phase, �i . The outermost shaded region
demarcates the range of final eccentricities for asteroids with an initial eccentricity ei = 0.4. The innermost shaded region demarcates the range of final eccentricities
for asteroids with an initial eccentricity ei = 0.2. The solid line at the center of the shaded regions is the final eccentricity for an asteroid with an initial eccentricity
ei = 0.

belt should be equal to the lower bound of Equation (32). We use
the analytical theory to make a rough estimate of the parameter
λ (and hence ȧ6) that would yield a final distribution with lower
peak near 0.09 and upper peak near 0.19 (which is similar to the
best-fit double-Gaussian in Figure 5).

Applying Equation (32), we see that there are two possible
solutions: 〈ei〉 = 0.14,δe = 0.05 and 〈ei〉 = 0.05,δe = 0.14.
A corresponding migration rate of Saturn can be estimated
from the value of δe using Equation (33), and the parameter
relationships plotted in Figures 2 and 3. The former solution
(δe = 0.05) requires a migration rate for Saturn of ȧ6 =
30 AU Myr−1. We mention this implausible solution here for
completeness, but we will not discuss it any further. The latter
solution (δe = 0.14) requires a migration rate for Saturn of
ȧ6 = 4 AU Myr−1. We dub this solution the “cold belt” solution.
This rate is comparable to the rates of planet migration found
in the “Jumping Jupiter” scenario proposed by Brasser et al.
(2009). A third solution exists if we consider that eccentricities
in the main belt are restricted by the orbits of Mars and
Jupiter on either side, such that stable asteroid orbits do not
cross the planetary orbits. This limits asteroid eccentricities to
values such that neither the aphelion of the asteroid crosses
the perihelion distance of Jupiter, nor the perihelion of the
asteroid crosses the aphelion distance of Mars. Maximum
asteroid eccentricity is therefore a function of semimajor axis,
where emax = min(1 − QMars/a − 1, qJupiter/a − 1), where Q
and q are planet aphelion and perihelion, respectively, and a
is the semimajor axis of the asteroid. In this case, an initial
single-Gaussian eccentricity distribution with a mean greater
than ∼0.3 would be severely truncated; therefore, we need
only fit the lower peak of the double-Gaussian distribution at
e = 0.09. Applying Equation (32), we find that δe = 0.21
provides a good fit. The corresponding migration rate of Saturn
is ȧ6 = 0.8 AU Myr−1. We dub this solution the “hot belt”
solution.

We illustrate the two possible solutions for an ensemble
of hypothetical asteroids having semimajor axes uniformly
distributed randomly in the range 2.1–2.8 AU. In Figure 7(a)
the initial eccentricity distribution is modeled as a Gaussian
distribution with a mean 〈ei〉 = 0.05 and a standard deviation of
0.01. This initial standard deviation was chosen so that the final
standard deviation would be the same as that of the observed

main belt. Figure 7(b) shows the eccentricity distribution after ν6
resonance sweeping has occurred due to the migration of Saturn
at a rate of 4 AU Myr−1. The final distribution was calculated
with Equation (31); we used values of ε shown in Figure 3,
and the value of λ was calculated with the aid of Figure 2
which relates the value of gp to the semimajor axis of Saturn.
As expected, when an ensemble of asteroids with a single-
peaked eccentricity distribution is subjected to the sweeping
secular resonance, the result is a double-peaked eccentricity
distribution. Because of the slight bias toward the upper limit of
the eccentricity excitation band, proportionally more asteroids
are found in the upper peak.

In Figure 7(c) the initial eccentricity distribution is modeled
as a truncated Gaussian: a Gaussian with mean 〈ei〉 = 0.4 and
standard deviation 0.1, but truncated at the semimajor axis-
dependent Mars-crossing value. We used Equation (31) to cal-
culate the eccentricity distribution of this hypothetical ensemble
after ν6 resonance sweeping with ȧ6 = 0.8 AU Myr−1. Again,
allowing that only those asteroids whose final eccentricities are
below the Mars-crossing value will remain, the resulting post-
migration eccentricity distribution is shown in Figure 7(d). In
this case, we find the lower peak at the same eccentricity value
as the lower peak in the observed main belt distribution (see
Figure 5).

In both cases of possible solutions (initially cold main belt
with 〈ei〉 = 0.05 and ȧ6 = 4 AU Myr−1; and initially hot main
belt with 〈ei〉 = 0.4 and ȧ6 = 0.8 AU Myr−1), the theoretical
models yield an excess of asteroids with eccentricities greater
than 0.2 than in the observed main belt. However, as shown by
Minton & Malhotra (2010), on gigayear timescales, the e � 0.2
population of the asteroid belt is dynamically more unstable than
the e � 0.2 population. Thus, both solutions may be consistent
with the observations, as post-sweeping dynamical erosion
could result in a final eccentricity distribution resembling more
closely the observed distribution.

The estimates of Saturn’s migration rate quoted above de-
pend strongly on the eccentricities of the giant planets during
their migration. In deriving the above estimates, we adopted
the present values of the giant planets’ orbital eccentrici-
ties. The ν6 resonance strength coefficient ε (Equation (3))
is proportional to the amplitude of the p = 6 mode, which
is related to the eccentricities of the giant planets (namely,
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Figure 7. Effects of the sweeping ν6 resonance on an ensemble of fictitious asteroids with semimajor axes 2.1–2.8 AU and a uniform distribution of pericenter
longitudes. (a) Initial distribution of eccentricities, with mean 0.05 and standard deviation 0.01 (the “cold belt” solution). (b) The final distribution of eccentricities after
ν6 sweeping, estimated with the analytical theory (Equation (31)), for ȧ6 = 4.0 AU My r−1. The two peaks in the final eccentricity distribution are at approximately
the same values as the observed peaks in the main asteroid belt eccentricity distribution shown in Figure 5. (c) Initial distribution of eccentricities, with mean 0.40
and standard deviation 0.1 (the “hot belt” solution). Asteroids with eccentricities greater than the Mars-crossing value were discarded. (d) The final distribution of
eccentricities after ν6 sweeping for ȧ6 = 0.8 AU My r−1. The final distribution in (d) is depleted by a factor of 2.3 from the initial distribution in (c). The ordinates in
the four panels are not to the same scale.

Saturn and Jupiter). From Equation (39), and the definition
ej (sin �j, cos �j ) ≡ (hj , kj ), the value of E

(p)
j is a linear com-

bination of the eccentricities of the giant planets. Because Saturn
is the planet with the largest amplitude of the p = 6 mode, from
Equation (31) the relationship between the sweep rate and the
value of Saturn’s eccentricity is approximately λmin ∝ e2

6. There-
fore, to increase the limiting timescale by a factor of 10 would
only require that the giant planets’ eccentricities were ∼0.3×
their current value (i.e., e5,6 ≈ 0.015).

5. CONCLUSION AND DISCUSSION

Based on the existence of the inner asteroid belt, we conclude
that Saturn’s migration rate must have been � 0.15 AU Myr–1

as Saturn migrated from 8.5 to 9.2 AU (as the ν6 resonance
migrated from 2.8 to 2.1 AU). Migration rates lower than
∼0.15 AU Myr–1 would be inconsistent with the survival of any
asteroids in the inner main belt, as the ν6 secular resonance
would have excited asteroid eccentricities to planet-crossing

values. This lower limit for the migration rate of Saturn assumes
that Jupiter and Saturn had their current orbital eccentricities;
the migration rate limit is inversely proportional to the square
of the amplitude of the g6 secular mode; if Jupiter and Saturn’s
eccentricities were ∼0.3× their current value (i.e., e5,6 ≈ 0.015)
during the planet migration epoch, the limit on the migration rate
decreases by a factor of ∼10. (This caveat also applies to the
migration rate limits quoted below.)

Our analysis of secular resonance sweeping predicts that a
single-peaked eccentricity distribution will be transformed into
a double-peaked eccentricity by secular resonance sweeping.
We find that the observed eccentricity distribution of asteroids
may be consistent with a double-peaked distribution function,
although we acknowledge that the statistics are poor. We used
a double-Gaussian function to model the observed asteroid ec-
centricity distribution to set even tighter, albeit model-dependent
constraints on the migration rate of Saturn.

We identified two possible migration rates that depend on
the pre-migration dynamical state of the main asteroid belt. The
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first, the “cold primordial belt” solution, has an asteroid belt
with an initial eccentricity distribution modeled as a Gaussian
with 〈ei〉 = 0.05; Saturn’s migration rate of 4 AU Myr−1 yields
a final eccentricity distribution consistent with the observed
asteroid belt. The second, the “hot primordial belt” solution, has
an asteroid belt with an initial eccentricity distribution modeled
as a Gaussian with 〈ei〉 = 0.4, σe = 0.1, but truncated above
the Mars-crossing value of eccentricity; in this case, Saturn’s
migration rate of 0.8 AU Myr−1 is generally consistent with the
observed asteroid belt.

Each of these solutions has very different implications for the
primordial excitation and depletion of the main asteroid belt.
The cold belt solution, with ȧ6 = 4 AU Myr−1, would lead to
little depletion of the asteroid belt during giant planet migration,
as the ν6 resonance would be unable to raise eccentricities to
Mars-crossing values. This implies an initial dynamically quite
cold asteroid belt with not more than ∼2 times the mass of the
current main belt; the latter estimate comes from accounting for
dynamical erosion over the age of the solar system (Minton &
Malhotra 2010).

The hot belt solution, with ȧ6 = 0.8 AU Myr−1, would lead
to loss of asteroids directly due to excitation of eccentricities
above planet-crossing values, by about a factor of ∼2. In this
case, the main asteroid belt was more dynamically excited prior
to resonance sweeping than we find it today. This implies much
greater loss of asteroids prior to ν6 sweeping, as the peak of the
eccentricity distribution would be near the Mars-crossing value
and subject to strong dynamical erosion (Minton & Malhotra
2010).

Each of these solutions has different implications for the
model that the LHB of the inner solar system is linked to the
epoch of planetesimal-driven giant planet migration (Gomes
et al. 2005; Strom et al. 2005). These implications will be
explored in a future paper.

We remind the reader that in order to elucidate the effects of
ν6 resonance sweeping, we have made a number of simplifying
assumptions to arrive at an analytically tractable model. These
simplifications include neglecting the effects of planets other
than Jupiter and Saturn, the effects of sweeping Jovian MMRs
on asteroids, the effects of a presumed massive Kuiper Belt
during the epoch of planet migration, and the self-gravity and
collisional interactions of a previously more massive asteroid
belt. In addition, our analysis was carried out in the planar
approximation, thereby neglecting any eccentricity–inclination
coupling effects. These neglected effects can be expected to
reduce somewhat the lower limit on Saturn’s migration speed
that we have derived, because in general they would reduce the
effectiveness of the ν6 in exciting asteroid eccentricities. Perhaps
more importantly, giant planet migration would also lead to the
sweeping of the main asteroid belt by the ν16 inclination secular
resonance (Williams & Faulkner 1981) whose effects could be
used to infer additional constraints.

Recently, Morbidelli et al. (2010) found through numeri-
cal simulations with slow rates of planet migration (e-folding
timescales exceeding 5 Myr) that the surviving asteroids in the
main belt tend to be clumped around MMRs. The semimajor
axis distribution of survivors is found very different from the
observed distribution for asteroids, and also that a large propor-
tion of survivors have inclinations above 20◦, both inconsistent
with the current main asteroid belt; comparisons made with
the unbiased main belt asteroid distributions as described in
Minton & Malhotra (2009). This is likely due to the effects of
the sweeping ν16 inclination longitude of ascending node secular

resonance, analogous to the sweeping ν6 eccentricity–pericenter
secular resonance that we analyzed in the present study. While
the effects of the sweeping ν16 resonance are analogous to the
ν6, only affecting inclinations instead of eccentricities, a full
analysis of the asteroid belt inclinations is beyond the scope of
the present work, but will be explored in a future study.

A number of other studies have derived limits on the speed
of planetesimal-driven giant planet migration. Murray-Clay
& Chiang (2005) exclude an e-folding migration timescale
τ � 1 Myr to 99.65% confidence based on the lack of a large
observed asymmetry in the population of Kuiper Belt objects in
the two libration centers of the 2:1 Neptune MMR. Boué et al.
(2009) exclude τ � 7 Myr based on the observed obliquity
of Saturn. The latter lower limit on the migration timescale
is slightly incompatible with the lower limit on the rate of
Saturn’s migration of ȧ6 > 0.15 AU Myr−1 we derive based
on the existence of the inner asteroid belt. One way these can
be reconciled is if Saturn’s orbital eccentricity were a factor ∼2
smaller than its present value as it migrated from 8.5 to 9.2 AU,
then some mechanism would need to have increased Saturn’s
eccentricity up to its present value by the time Saturn reached
its present semimajor axis of ∼9.6 AU.
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APPENDIX

THE MAIN BELT ECCENTRICITY DISTRIBUTION

The binned eccentricity distribution may be modeled as a
Gaussian probability distribution function, given by

p(x) = 1

σ
√

2π
exp

[
− (x − μ)2

2σ 2

]
, (A1)

where σ is the standard deviation, μ is the mean, and x is
the random variable; in our case x is the eccentricity. With an
appropriate scaling factor, Equation (A1) can be used to model
the number of asteroids per eccentricity bin. However, rather
than fit the binned distribution, we instead perform a least-
squares fit of the unbinned sample to the Gaussian cumulative
distribution function given by

P (x) = 1

2
+

1

2
erf

(
−x − μ

σ
√

2

)
. (A2)

For the eccentricities of our sample of 931 main belt asteroids,
the best-fit parameters are

μe = 0.135 ± 0.00013,

σe = 0.0716 ± 0.00022.

We also fit the data to a double-Gaussian distribution,

p2(x) = A′

σ ′√2π

{
exp

[
− (x − μ′

1)2

2σ ′2

]
+ exp

[
− (x − μ′

2)2

2σ ′2

]}
.

(A3)
The cumulative distribution function for Equation (A3) is

P2(x) = 1

2
+

1

4

[
erf

(
−x − μ′

1

σ
√

2

)
+ erf

(
−x − μ′

2

σ
√

2

)]
. (A4)
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For the eccentricities of our sample of 931 main belt asteroids,
we performed a least-squares fit to Equation (A4) and obtained
the following best-fit parameters:

μ′
e,1 = 0.0846 ± 0.00011,

μ′
e,2 = 0.185 ± 0.00012,

σ ′
e = 0.0411 ± 0.00020.

We evaluated the goodness of fit using the K-S test. This
determines the probability that two distributions are the same,
or in our case how well our model distributions fit the observed
data (Press et al. 1992). The K-S test compares the cumulative
distribution of the data against the model cumulative distribution
function. We found that our asteroid sample has a probability
of 4.5 × 10−2 that it comes from the best-fit single Gaussian
(Equation (A2)), but a probability of 0.73 that it comes from
the double Gaussian (Equation (A4)). Therefore, the K-S tests
indicate that the double Gaussian is a better fit to the data than
the single Gaussian.

We performed Hartigan’s dip test (Hartigan & Hartigan 1985)
to test whether the observational data are consistent with a multi-
peaked distribution. Hartigan’s dip test calculates the probability
that the distribution being tested has a single peak. Applying
Hartigan’s dip test to a given distribution yields in a test statistic;
together with the sample size, the test statistic is matched to a
p-value range in a precomputed table provided by Hartigan &
Hartigan (1985). The p-value is a measure of the probability that
the distribution actually has only one peak (the null hypothesis,
for this problem). The smaller the calculated p-value, the less
likely is the distribution to have a single peak and the more
likely it is to have at least two significant peaks. A p-value of
< 0.05 indicates that the null hypothesis is very unlikely and
that the given distribution has more than one peak. We applied
the dip test to the eccentricity distribution of our sample of
931 main belt asteroids; we determined that the test statistic is
0.0107. From Hartigan & Hartigan (1985), this corresponds to
a p-value range of 0.6 < p < 0.7 (based on a sample size of
1000). This indicates that the Hartigan dip test does not rule out
the null hypothesis, i.e., a single-peaked distribution cannot be
ruled out.

To further aid the interpretation of this test, we compare
this result to that obtained by applying Hartigan’s dip test
to synthetic distributions that were explicitly double peaked
by construction. Ten model distributions (of 1000 eccentricity
values) were generated from the double-Gaussian function of
Equation (A4), with parameter values μ1 = 0.0846, μ2 =
0.185, and σ = 0.0411 (same parameter values as the best fit
for our sample of asteroids). Only the random seed was varied
between each model distribution. Applying the Hartigan dip
test, we find that the test statistic ranged between 0.00852 and
0.0126, corresponding to p-values between 0.98 and 0.3. This
means that, according to the dip test, the null hypothesis—i.e., a
single-peaked distribution—could not be ruled out for any of the
model distributions (since none had p < 0.05), despite the fact
that they were each drawn from an explicitly double-peaked
distribution by construction. This illustrates that even with a
sample size of nearly 1000, the dispersion in eccentricity around
the two peaks is too large in comparison to the distance between

the peaks and that the dip test is not sufficiently sensitive to detect
the double-peaked underlying distribution. We interpret this to
mean that the results of both the K-S test and Hartigan’s dip test
indicate that the main asteroid belt eccentricity distribution is
consistent with being drawn from a double-peaked distribution,
but that this cannot be definitely shown.
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